

SAFETY AND BUILDINGS DIVISION
Plumbing Product Review
P.O. Box 2658
Madison, Wisconsin 53701-2658
TTY: Contact Through Relay

Jim Doyle, Governor Richard J. Leinenkugel, Secretary

August 31, 2009

THE PROCTOR AND GAMBLE COMPANY HEALTH CARE ANN MCGHEE 8700 MASON-MONTGOMERY RD. MASON OH 45040-9462

Re: Description: WATER TREATMENT DEVICE- ACTIVATED CARBON

Manufacturer: THE PROCTOR AND GAMBLE COMPANY

Product Name: PUR HORIZONTAL FAUCET MOUNT WITH FLAVOR OPTIONS (POU) Model Number(s): FM-9100B, FM9400B, FM-9500B, FM9600B, FM9700B AND FM5050B ALL

USING THE RF-9999 CARTRIDGE (POU)

Product File No: 20090274

The specifications and/or plans for this plumbing product have been reviewed and determined to be in compliance with chapters Comm 82 through 84, Wisconsin Administrative Code, and Chapters 145 and 160, Wisconsin Statutes.

The Department hereby issues an approval based on the Wisconsin Statutes and the Wisconsin Administrative Code. This approval is valid until the end of August 2014.

This approval is contingent upon compliance with the following stipulation(s):

- This product has undergone sufficient testing to document the product's ability to reduce only those contaminants and/or substances as specified in this approval letter when the product is installed and maintained in strict accordance with the manufacturers published instructions.
- Where the Department of Natural Resources (DNR) has jurisdiction, a written approval may be required prior to installation of this product in a water supply system to reduce the concentration of a contaminant that exceeds the primary drinking water standards contained in ch. NR 809, Wis. Admin. Code, the enforcement standards contained in ch. NR 140, Wis. Admin. Code, or for a water supply system that is subject to a written advisory opinion by the DNR. For more information contact the DNR Section of Private Water Systems, P.O. Box 7921, Madison, WI 53707, telephone (608) 266-3415.
- If these approved devices are modified or additional assertions of function or performance are made, then this approval shall be considered null and void, unless the change is submitted to the department for review and the approval is reaffirmed.
- These devices will only reduce the concentration of volatile organic chemicals at water outlets that are served by the devices. There are dermal (skin) absorption and inhalation exposure risks associated with volatile organic chemicals. Therefore, using point-of-use devices such as these will not protect all routes of potential exposure. Potentially hazardous exposures to volatile organic chemicals will remain possible at unprotected outlets, particularly hot water outlets (e.g. bathing, showering, clothes washing or dish washing).
 - If, by way of reputable water analyses, a water supply is known to contain unsafe levels of volatile organic chemicals, then all the water entering the residence must be treated at the point-of-entry using an approved water treatment device to address all potential routes of exposure.
- If the treatment components of this device (e.g. replacement cartridge) are replaced with anything other than those originally approved for use with this device, then this approval shall immediately be considered null and void.

SBD-10564-E (N.10/97) File Ref: 09027401.DOC

The Proctor & Gamble Company August 31, 2009 Page 2 of 5

Product File No.: 20090274

These devices will only reduce the concentration of cysts/oocysts at water outlets that are served by the devices. Therefore, using point-of-use devices such as these will not protect all routes of potential exposure. Potentially hazardous exposures to cysts/oocysts will remain possible at unprotected outlets. The presence of cysts/oocysts strongly suggests that other pathogens (e.g. bacteria, virus) may also be present.

If, by way of reputable water analyses, a water supply is known to contain cysts/oocysts, then all the water entering the residence must be treated at the point-of-entry, using an approved water treatment device, to address all potential routes of exposure thereby providing a biologically safe water supply.

Based on testing data submitted to and reviewed by the department, this approval recognizes that these plumbing products will reduce the concentration of contaminants as specified on pages 1 through 5 of this letter.

TABLE 1 OF 5 PRODUCT FILE NUMBER 20090274 HEALTH EFFECTING ORGANIC CONTAMINANT REDUCTION CAPABILITIES

Flow Rate: 2.7 liters per minute (lpm) [0.7 gallons per minute (gpm)]

Capacity: 378.5 liters (I) [100 gallons (gals.)]

Tested Contaminant	Influent challenge level µg/l (ppb)
Atrazine	9.0 ± 10%
Alachlor	40.0 ± 10%
Benzene	15.0 ± 10%
Carbofuran	80.0 ± 10%
Carbon Tetrachloride	15.0 ± 10%
Chlordane	40.0 ± 10%
Endrin	6.0 ± 10%
Ethylbenzene	2,100 ± 10%
Heptachlor epoxide	4.0 ± 10%
Lindane	0.6 ± 10%
Methoxychlor	300 ± 10%
Methyl tert-butyl ether (MtBE)	15.0 ± 20%
Monochlorobenzene	2,000 ± 10%
o-Dichlorobenzene	1,800 ± 10%
Simazine	12.0 ± 10%
Styrene	2,000 ± 10%
Tetrachloroethene	15.0 ± 10%
Toluene	3,000 ± 10%
Toxaphene	15.0 ± 10%
Trichloroethene	300 ± 10%
2,4-D	300 ± 10%
2,4,5-TP (Silvex)	30.0 ± 10%

Other conditions: the contaminant reduction performance data for table 1 of 5 was generated by testing conducted in accordance with NSF *International* Standard 53. To comply, the device must reduce the influent Atrazine concentrations such that all effluent samples are $\leq 3.0~\mu g/l$; the device must reduce the influent Alachlor concentrations such that all effluent concentrations are $\leq 2.0~\mu g/l$; the device must reduce the influent Benzene concentrations such that all effluent samples are $\leq 5.0~\mu g/l$; the device must reduce the influent Carbofuran concentrations such that all effluent concentrations are $\leq 40.0~\mu g/l$; the device must reduce the influent Chlordane concentrations such that all effluent concentrations are $\leq 5.0~\mu g/l$; the device must reduce the influent Endrin concentrations such that all effluent concentrations are $\leq 2.0~\mu g/l$; the device must reduce the influent Ethylbenzene concentrations such that all effluent concentrations are $\leq 2.0~\mu g/l$; the device must reduce the influent Ethylbenzene concentrations such that all effluent concentrations are $\leq 700~\mu g/l$; the device must reduce the influent Heptachlor epoxide concentrations such that all effluent concentrations are $0.2~\mu g/l$; the device must reduce the

The Proctor & Gamble Company August 31, 2009 Page 3 of 5

Product File No.: 20090274 (continued from previous page)

influent Lindane concentrations such that all effluent samples are ≤ 0.2 µg/l; the device must reduce the influent Methoxychlor concentrations such that all effluent samples are ≤ 40 ug/l; the device must reduce the influent MtBE concentrations such that all effluent concentrations are ≤ 5.0 µg/l; the device must reduce the influent Monochlorobenzene concentrations such that all effluent concentrations are ≤ 100 μα/l: the device must reduce the influent o-Dichlorobenzene concentrations such that all effluent concentrations are ≤ 600 µg/l; the device must reduce the influent Simazine concentrations such that all effluent concentrations are $\leq 4.0 \,\mu g/l$; the device must reduce the influent Styrene concentrations such that all effluent concentrations are ≤ 100 µg/l; the device must reduce the influent Tetrachloroethylene concentrations such that all effluent concentrations are ≤ 5.0 µg/l; the device must reduce the influent Toluene concentrations such that all effluent concentrations are ≤ 1.000 μg/l; the device must reduce the influent Trichloroethylene concentrations such that all effluent concentrations are ≤ 5.0 µg/l; the device must reduce the influent Toxaphene concentrations such that all effluent samples are ≤ 3.0 µg/l; the device must reduce the influent 2.4-D concentrations such that all effluent concentrations are ≤ 70µg/l and the device must reduce the influent 2,4,5-TP (Silvex) concentrations such that all effluent concentrations are $\leq 5.0 \,\mu g/l$.

μg/l = micrograms per liter are equivalent to parts per billion (ppb) \pm = plus or minus

≤ = less than or equal to

TABLE 2 OF 5 **PRODUCT FILE NUMBER 20090274** HEALTH EFFECTING MICROBIOLOGICAL CONTAMINANT REDUCTION CAPABILITIES

Flow Rate: 2.7 lpm (0.7 gpm)

Capacity: dependent on the type and quantity of particulate matter present in the influent water, the need for maintenance may be indicated by a significant decrease in flow rate.

_	<u> </u>	 ,
	Tested Contaminant	Influent Challenge Level (#/ml)
	C. parvum oocvsts	≥ 50.000

Other conditions: the contaminant reduction performance data for table 2 of 5 was generated by testing conducted in accordance with NSF International Standard 53. To comply, the device must reduce at least 99.95 percent of the influent C. parvum oocysts to qualify the device for the reduction of oocysts of Cryptosporidium and Toxoplasma and cysts of Giardia and Entamoeba.

μm = micrometer \geq = greater than or equal to #/ml = number per milliliter

TABLE 3 OF 5 PRODUCT FILE NUMBER 20090274 HEALTH EFFECTING INORGANIC CONTAMINANT REDUCTION CAPABILITIES

Flow Rate: 2.7 lpm (0.7 gpm)

Capacity: 378.5 I (100 gals.) for lead and mercury reduction. For asbestos reduction,

dependent on the type and quantity of particulate matter present in the influent water, the

need for maintenance may be indicated by a significant decrease in flow rate.

Tested Contaminant	Influent Challenge Level (mg/l) ' '
Asbestos fibers	10 ⁶ to 10 ⁷ F/I
Lead (Pb ⁺²) ²	0.15 ± 10%
Mercury (Hg ⁺²) ²	0.006 ± 10%

Other conditions: the contaminant reduction performance data displayed for table 3 of 5 was generated by testing conducted in accordance with NSF International Standard 53. To qualify for asbestos reduction, the device must reduce the influent asbestos fiber concentrations by ≥ 99%; the asbestos reduction is only for fibers exceeding 10 μm in length. To qualify for lead reduction, the devices must reduce the influent challenge concentrations such that all effluent concentrations are ≤ 0.01 mg/l. To qualify for mercury reduction, the device must reduce the influent challenge concentrations such that all effluent concentrations are ≤ 0.002 mg/l.

1 = milligrams per liter (mg/l) are equivalent to parts per million (ppm) μ**m** = micrometers

* = unless otherwise indicated

F/I = fibers per liter

 \pm = plus or minus

2 = metals are tested at pH 6.5 and pH 8.5

The Proctor & Gamble Company August 31, 2009

Page 4 of 5

Product File No.: 20090274

HEALTH EFFECTING ORGANIC CONTAMINANT REDUCTION CAPABILITIES (VIA SURROGATE) PRODUCT FILE NUMBER 20090274 TABLE 4 OF 5

Flow Rate: 2.7 liters per minute (lpm) [0.7 gallons per minute (gpm)]

Capacity: 378.5 liters (I) [100 gallons (gals.)]

Tested Contaminant	Influent Challenge (μg/l) ¹
Alachlor	50
Atrazine	100
Benzene	81
Carbofuran	190
Carbon tetrachloride	78
Chlorobenzene	77
Chloropicrin	15
2,4-D	110
Dibromochloropropane (DBCP)	52
o-Dichlorobenzene	80
p-Dichlorobenzene	40
1,2-Dichloroethane	88
1,1-Dichloroethylene	83
cis-1,2-Dichloroethylene	170
trans-1,2-Dichloroethylene	86
1,2-Dichloropropane	80
cis-1,3-Dichloropropylene	79
Dinoseb	170
Endrin	53
Ethylbenzene	88
Ethylene dibromide (EDB)	44
Haloacetonitriles (HAN):	-
Bromochloroacetonitrile	22
Dibromoacetonitrile	24
Dichloroacetonitrile	9.6
Trichloroacetonitrile	15
Haloketones (HK):	-
1,1-Dichloro-2-propanone	7.2
1,1,1-Trichloro-2-propanone	8.2
Heptachlor (H-34, HEPTOX)	80
Heptachlor epoxide	10.7
Hexachlorobutadiene	44
Hexachlorocyclopentadiene	60
Lindane	55
Methoxychlor	50
Pentachlorophenol	96
Simazine	120
Styrene	150
1,1,2,2-Tetrachloroethane	81
Tetrachloroethylene	81
Toluene	78
2,4,5-TP (silvex)	270
Tribromoacetic acid	42
1,2,4-Trichlorobenzene	160
1,1,1-Trichloroethane	84
1,1,2-Trichloroethane	150
Trichloroethylene	180
Trihalomethanes (chloroform surrogate)	300
Xylenes (total)	70

The Proctor & Gamble Company August 31, 2009 Page 5 of 5 Product File No.: 20090274

Product File No.: 20090274 (continued from previous page)

Other Conditions: the contaminant reduction performance capabilities displayed for Table 4 of 5 were verified by testing conducted in accordance with NSF *International* Standard 53. To qualify for the reduction of the organic contaminants listed above, the device must reduce the influent challenge concentration of chloroform at 300 μ g/L \pm 10% at each sample point by a minimum of 95%.

 $1 = \text{micrograms per liter } (\mu g/I) \text{ are equivalent to parts per billion (ppb)}$

 \pm = plus or minus

TABLE 5 OF 5 PRODUCT FILE NUMBER 20090274 AESTHETICS EFFECTING INORGANIC CONTAMINANT REDUCTION CAPABILITIES

Flow Rate: 2.7 lpm (0.7 gpm)

Capacity: 378.5 I (100 gals.) for free chlorine reduction performance. For particulate

reduction, the capacity is dependent on the type and quantity of particulate matter present in the influent water, the need for maintenance may be indicated by a significant decrease in

flow rate.

Tested Contaminant	Influent Challenge Level (mg/l)*
Chlorine (free)	2.0 ± 0.2
Particles (0.5 - < 1.0 μm)	≥ 10,000 #/ml

Other conditions: the contaminant reduction performance data displayed for table 5 of 5 was generated by testing conducted in accordance with NSF *International* Standard 42. To qualify for free chlorine reduction, the device must reduce the influent challenge concentrations by \geq 50%; meeting the free chlorine reduction requirements also qualifies the device for the reduction of aesthetic, organic, taste and odor reduction (e.g. geosmin, methylisoborneol); this does not include hydrogen sulfide. To qualify for particulate reduction, the device must reduce the influent particulate concentrations by \geq 85%.

mg/l = milligrams per liter are equivalent to parts per million (ppm)

* = unless otherwise indicated

 \pm = plus or minus

 \geq = greater than or equal to

μm = micrometers #/ml = particles per milliliter < = less than

This device was tested under controlled laboratory, or field, conditions. The actual performance of this device for a specific end use installation will vary from the tested conditions based on local factors such as water pressure, water temperature and water chemistry.

The department is in no way endorsing this product or any advertising, and is not responsible for any situation that may result from its use.

Sincerely,

Glen W. Schlueter
Engineering Consultant-Plumbing Product Reviewer
Bureau of Integrated Services
Safety and Buildings Division
Department of Commerce
(608) 267-1401 Phone
(608) 267-9566 Fax
glen.schlueter@wi.gov Email
8:00A – 4:30P CDT Work Hours

GWS:gws